Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Infect Dis ; 118: 211-213, 2022 May.
Artigo em Inglês | MEDLINE | ID: covidwho-1838859

RESUMO

SARS-CoV-2 Omicron strain emergence raised concerns that its enhanced infectivity is partly due to altered spread/contamination modalities. We therefore sampled high-contact surfaces and air in close proximity to patients who were verified as infected with the Omicron strain, using identical protocols applied to sample patients positive to the original or Alpha strains. Cumulatively, for all 3 strains, viral RNA was detected in 90 of 168 surfaces and 6 of 49 air samples (mean cycle threshold [Ct]=35.2±2.5). No infective virus was identified. No significant differences in prevalence were found between strains.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , RNA Viral/genética , Manejo de Espécimes
2.
Anal Chem ; 94(10): 4380-4389, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: covidwho-1713090

RESUMO

A multi-component microarray, applying a novel analysis algorithm, was developed for quantitative evaluation of the SARS-CoV-2 vaccines' immunogenicity. The array enables simultaneous quantitation of IgG, IgM, and IgA, specific to the SARS-CoV-2 spike, receptor binding domain, and nucleocapsid proteins. The developed methodology is based on calculating an apparent immunoglobulin signal from the linear range of the fluorescent read-outs generated by scanning the microarray slides at different exposure times. A dedicated algorithm, employing a rigorous set of embedded conditions, then generates a normalized signal for each of the unique assays. Qualification of the multi-component array performance (evaluating linearity, extended dynamic-range, specificity, precision, and accuracy) was carried out with an in-house COVID-19, qRT-PCR positive serum, as well as pre-pandemic commercial negative sera. Results were compared to the WHO international standard for anti-SARS-CoV-2 immunoglobulins. Specific IgG, IgM, and IgA signals obtained by this array enabled successful discrimination between SARS-CoV-2 q-RT-PCR positive (seroconverted SARS-CoV-2 patients) and negative (naïve) samples. This array is currently used for evaluation of the humoral response to BriLife, the VSV-based Israeli vaccine during phase I/II clinical trials.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Anticorpos Antivirais , COVID-19/diagnóstico , COVID-19/prevenção & controle , Humanos , Imunoglobulina G , Imunoglobulina M , SARS-CoV-2/genética , Sensibilidade e Especificidade
3.
Vaccines (Basel) ; 10(2)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: covidwho-1699506

RESUMO

The emergence of rapidly spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a major challenge to the ability of vaccines and therapeutic antibodies to provide immunity. These variants contain mutations of specific amino acids that might impede vaccine efficacy. BriLife® (rVSV-ΔG-spike) is a newly developed SARS-CoV-2 vaccine candidate currently in phase II clinical trials. It is based on a replication-competent vesicular stomatitis virus (VSV) platform. The rVSV-ΔG-spike contains several spontaneously acquired spike mutations that correspond to SARS-CoV-2 variants' mutations. We show that human sera from BriLife® vaccinees preserve comparable neutralization titers towards alpha, gamma, and delta variants and show less than a three-fold reduction in the neutralization capacity of beta and omicron compared to the original virus. Taken together, we show that human sera from BriLife® vaccinees overall maintain a neutralizing antibody response against all tested variants. We suggest that BriLife®-acquired mutations may prove advantageous against future SARS-CoV-2 VOCs.

4.
Anal Bioanal Chem ; 414(5): 1949-1962, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: covidwho-1607761

RESUMO

Recently, numerous diagnostic approaches from different disciplines have been developed for SARS-CoV-2 diagnosis to monitor and control the COVID-19 pandemic. These include MS-based assays, which provide analytical information on viral proteins. However, their sensitivity is limited, estimated to be 5 × 104 PFU/ml in clinical samples. Here, we present a reliable, specific, and rapid method for the identification of SARS-CoV-2 from nasopharyngeal (NP) specimens, which combines virus capture followed by LC-MS/MS(MRM) analysis of unique peptide markers. The capture of SARS-CoV-2 from the challenging matrix, prior to its tryptic digestion, was accomplished by magnetic beads coated with polyclonal IgG-α-SARS-CoV-2 antibodies, enabling sample concentration while significantly reducing background noise interrupting with LC-MS analysis. A sensitive and specific LC-MS/MS(MRM) analysis method was developed for the identification of selected tryptic peptide markers. The combined assay, which resulted in S/N ratio enhancement, achieved an improved sensitivity of more than 10-fold compared with previously described MS methods. The assay was validated in 29 naive NP specimens, 19 samples were spiked with SARS-CoV-2 and 10 were used as negative controls. Finally, the assay was successfully applied to clinical NP samples (n = 26) pre-determined as either positive or negative by RT-qPCR. This work describes for the first time a combined approach for immuno-magnetic viral isolation coupled with MS analysis. This method is highly reliable, specific, and sensitive; thus, it may potentially serve as a complementary assay to RT-qPCR, the gold standard test. This methodology can be applied to other viruses as well.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Cromatografia Líquida/métodos , Separação Imunomagnética/métodos , SARS-CoV-2/genética , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Anticorpos Antivirais/química , Biomarcadores/química , COVID-19/imunologia , COVID-19/virologia , Teste para COVID-19/instrumentação , Teste para COVID-19/normas , Cromatografia Líquida/instrumentação , Cromatografia Líquida/normas , Humanos , Separação Imunomagnética/instrumentação , Separação Imunomagnética/normas , Nasofaringe/virologia , Peptídeos/química , Peptídeos/imunologia , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/normas
5.
Microbiol Spectr ; 9(2): e0087021, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: covidwho-1455682

RESUMO

The first case of SARS-CoV-2 was discovered in Israel in late February 2020. Three major outbreaks followed, resulting in over 800,000 cases and over 6,000 deaths by April 2021. Our aim was characterization of a serological snapshot of Israeli patients and healthy adults in the early months of the COVID-19 pandemic. Sera from 55 symptomatic COVID-19 patients and 146 healthy subjects (early-pandemic, reverse transcription-quantitative PCR [qRT-PCR]-negative), collected in Israel between March and April 2020, were screened for SARS-CoV-2-specific IgG, IgM, and IgA antibodies, using a 6-plex antigen microarray presenting the whole inactivated virus and five viral antigens: a stabilized version of the spike ectodomain (S2P), spike subunit 1 (S1), receptor-binding-domain (RBD), N-terminal-domain (NTD), and nucleocapsid (NC). COVID-19 patients, 4 to 40 days post symptom onset, presented specific IgG to all of the viral antigens (6/6) in 54 of the 55 samples (98% sensitivity). Specific IgM and IgA antibodies for all six antigens were detected in only 10% (5/55) and 4% (2/55) of the patients, respectively, suggesting that specific IgG is a superior serological marker for COVID-19. None of the qRT-PCR-negative sera reacted with all six viral antigens (100% specificity), and 48% (70/146) were negative throughout the panel. Our findings confirm a low seroprevalence of anti-SARS-CoV-2 antibodies in the Israeli adult population prior to the COVID-19 outbreak. We further suggest that the presence of low-level cross-reacting antibodies in naive individuals calls for a combined, multiantigen analysis for accurate discrimination between naive and exposed individuals. IMPORTANCE A 6-plex protein array presenting the whole inactivated virus and five nucleocapsid and spike-derived SARS-CoV-2 antigens was used to generate a serological snapshot of SARS-CoV-2 seroprevalence and seroconversion in Israel in the early months of the pandemic. Our findings confirm a very low seroprevalence of anti-SARS-CoV-2 antibodies in the Israeli adult population. We further propose that the presence of low-level nonspecific antibodies in naive individuals calls for a combined, multiantigen analysis for accurate discrimination between naive and exposed individuals enabling accurate determination of seroconversion. The developed assay is currently applied to evaluate immune responses to the Israeli vaccine during human phase I/II trials.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/epidemiologia , Análise em Microsséries/métodos , SARS-CoV-2/imunologia , Adulto , Idoso , Antígenos Virais/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Feminino , Humanos , Imunoensaio/métodos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Israel/epidemiologia , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/imunologia , Sensibilidade e Especificidade , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto Jovem
6.
J Infect Dis ; 224(4): 616-619, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: covidwho-1358460

RESUMO

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants may influence the effectiveness of existing laboratory diagnostics. In the current study we determined whether the British (20I/501Y.V1) and South African (20H/501Y.V2) SARS-CoV-2 variants of concern are detected with an in-house S1-based antigen detection assay, analyzing spiked pools of quantitative reverse-transcription polymerase chain reaction-negative nasopharyngeal swab specimens. The assay, combining 4 monoclonal antibodies, allowed sensitive detection of both the wild type and the variants of concern, despite accumulation of several mutations in the variants' S1 region-results suggesting that this combination, targeting distinct epitopes, enables both specificity and the universality.


Assuntos
COVID-19/diagnóstico , COVID-19/virologia , SARS-CoV-2/classificação , Anticorpos Monoclonais/imunologia , Antígenos Virais/imunologia , Antígenos Virais/isolamento & purificação , COVID-19/imunologia , Humanos , Mutação , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/isolamento & purificação , Carga Viral
7.
JCI Insight ; 6(12)2021 06 22.
Artigo em Inglês | MEDLINE | ID: covidwho-1223641

RESUMO

Mice are normally unaffected by SARS coronavirus 2 (SARS-CoV-2) infection since the virus does not bind effectively to the murine version of the angiotensin-converting enzyme 2 (ACE2) receptor molecule. Here, we report that induced mild pulmonary morbidities rendered SARS-CoV-2-refractive CD-1 mice susceptible to this virus. Specifically, SARS-CoV-2 infection after application of low doses of the acute lung injury stimulants bleomycin or ricin caused severe disease in CD-1 mice, manifested by sustained body weight loss and mortality rates greater than 50%. Further studies revealed markedly higher levels of viral RNA in the lungs, heart, and serum of low-dose ricin-pretreated mice compared with non-pretreated mice. Furthermore, lung extracts prepared 2-3 days after viral infection contained subgenomic mRNA and virus particles capable of replication only when derived from the pretreated mice. The deleterious effects of SARS-CoV-2 infection were effectively alleviated by passive transfer of polyclonal or monoclonal antibodies generated against the SARS-CoV-2 receptor binding domain (RBD). Thus, viral cell entry in the sensitized mice seems to depend on viral RBD binding, albeit by a mechanism other than the canonical ACE2-mediated uptake route. This unique mode of viral entry, observed over a mildly injured tissue background, may contribute to the exacerbation of coronavirus disease 2019 (COVID-19) pathologies in patients with preexisting morbidities.


Assuntos
Bleomicina/toxicidade , COVID-19/patologia , Lesão Pulmonar , Ricina/toxicidade , Animais , Chlorocebus aethiops , Comorbidade , Modelos Animais de Doenças , Feminino , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/virologia , Camundongos , Células Vero , Ligação Viral , Internalização do Vírus/efeitos dos fármacos
8.
Viruses ; 13(4)2021 03 26.
Artigo em Inglês | MEDLINE | ID: covidwho-1154538

RESUMO

Monoclonal antibodies represent an important avenue for COVID-19 therapy and are routinely used for rapid and accessible diagnosis of SARS-CoV-2 infection. The recent emergence of SARS-CoV-2 genetic variants emphasized the need to enlarge the repertoire of antibodies that target diverse epitopes, the combination of which may improve immune-diagnostics, augment the efficiency of the immunotherapy and prevent selection of escape-mutants. Antigen-specific controlled immunization of experimental animals may elicit antibody repertoires that significantly differ from those generated in the context of the immune response mounted in the course of disease. Accordingly, rabbits were immunized by several recombinant antigens representing distinct domains of the viral spike protein and monoclonal antibodies were isolated from single cells obtained by cell sorting. Characterization of a panel of successfully isolated anti-receptor binding domain (RBD) and anti-N-terminal domain (NTD) antibodies demonstrated that they exhibit high specificity and affinity profiles. Anti-RBD antibodies revealing significant neutralizing potency against SARS-CoV-2 in vitro were found to target at least three distinct epitopes. Epitope mapping established that two of these antibodies recognized a novel epitope located on the surface of the RBD. We suggest that the antibodies isolated in this study are useful for designing SARS-CoV-2 diagnosis and therapy approaches.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , COVID-19/virologia , Mapeamento de Epitopos , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Feminino , Humanos , Testes de Neutralização , Coelhos , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
9.
Anal Bioanal Chem ; 413(13): 3501-3510, 2021 May.
Artigo em Inglês | MEDLINE | ID: covidwho-1151992

RESUMO

Public health experts emphasize the need for quick, point-of-care SARS-CoV-2 detection as an effective strategy for controlling virus spread. To this end, many "antigen" detection devices were developed and commercialized. These devices are mostly based on detecting SARS-CoV-2's nucleocapsid protein. Recently, alerts issued by both the FDA and the CDC raised concerns regarding the devices' tendency to exhibit false positive results. In this work, we developed a novel alternative spike-based antigen assay, comprising four high-affinity, specific monoclonal antibodies, directed against different epitopes on the spike's S1 subunit. The assay's performance was evaluated for COVID-19 detection from nasopharyngeal swabs, compared to an in-house nucleocapsid-based assay, composed of novel antibodies directed against the nucleocapsid. Detection of COVID-19 was carried out in a cohort of 284 qRT-PCR positive and negative nasopharyngeal swab samples. The time resolved fluorescence (TRF) ELISA spike assay displayed very high specificity (99%) accompanied with a somewhat lower sensitivity (66% for Ct < 25), compared to the nucleocapsid ELISA assay which was more sensitive (85% for Ct < 25) while less specific (87% specificity). Despite being outperformed by qRT-PCR, we suggest that there is room for such tests in the clinical setting, as cheap and rapid pre-screening tools. Our results further suggest that when applying antigen detection, one must consider its intended application (sensitivity vs specificity), taking into consideration that the nucleocapsid might not be the optimal target. In this regard, we propose that a combination of both antigens might contribute to the validity of the results. Schematic representation of sample collection and analysis. The figure was created using BioRender.com.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/análise , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/análise , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Fosfoproteínas/análise , Sensibilidade e Especificidade , Manejo de Espécimes
10.
Nat Commun ; 11(1): 6402, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: covidwho-983658

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 imposes an urgent need for rapid development of an efficient and cost-effective vaccine, suitable for mass immunization. Here, we show the development of a replication competent recombinant VSV-∆G-spike vaccine, in which the glycoprotein of VSV is replaced by the spike protein of SARS-CoV-2. In-vitro characterization of this vaccine indicates the expression and presentation of the spike protein on the viral membrane with antigenic similarity to SARS-CoV-2. A golden Syrian hamster in-vivo model for COVID-19 is implemented. We show that a single-dose vaccination results in a rapid and potent induction of SARS-CoV-2 neutralizing antibodies. Importantly, vaccination protects hamsters against SARS-CoV-2 challenge, as demonstrated by the abrogation of body weight loss, and  alleviation of the extensive tissue damage and viral loads in lungs and nasal turbinates. Taken together, we suggest the recombinant VSV-∆G-spike as a safe, efficacious and protective vaccine against SARS-CoV-2.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Sintéticas/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Peso Corporal , COVID-19/virologia , Linhagem Celular , Cricetinae , Modelos Animais de Doenças , Relação Dose-Resposta Imunológica , Genoma Viral , Pulmão/patologia , Pulmão/virologia , Camundongos Endogâmicos C57BL , Mutação/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Vacinação , Carga Viral
11.
Clin Microbiol Infect ; 26(12): 1658-1662, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-753742

RESUMO

OBJECTIVES: Environmental surfaces have been suggested as likely contributors in the transmission of COVID-19. This study assessed the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contaminating surfaces and objects in two hospital isolation units and a quarantine hotel. METHODS: SARS-CoV-2 virus stability and infectivity on non-porous surfaces was tested under controlled laboratory conditions. Surface and air sampling were conducted at two COVID-19 isolation units and in a quarantine hotel. Viral RNA was detected by RT-PCR and infectivity was assessed by VERO E6 CPE test. RESULTS: In laboratory-controlled conditions, SARS-CoV-2 gradually lost its infectivity completely by day 4 at ambient temperature, and the decay rate of viral viability on surfaces directly correlated with increase in temperature. Viral RNA was detected in 29/55 surface samples (52.7%) and 16/42 surface samples (38%) from the surroundings of symptomatic COVID-19 patients in isolation units of two hospitals and in a quarantine hotel for asymptomatic and very mild COVID-19 patients. None of the surface and air samples from the three sites (0/97) were found to contain infectious titres of SARS-Cov-2 on tissue culture assay. CONCLUSIONS: Despite prolonged viability of SARS-CoV-2 under laboratory-controlled conditions, uncultivable viral contamination of inanimate surfaces might suggest low feasibility for indirect fomite transmission.


Assuntos
COVID-19/transmissão , Fômites/virologia , Hospitais de Isolamento/estatística & dados numéricos , Habitação/estatística & dados numéricos , Viabilidade Microbiana , SARS-CoV-2/isolamento & purificação , COVID-19/virologia , Humanos , RNA Viral/isolamento & purificação , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA